Let $A B C D$ be a square of side length $1$ . Let $P, Q, R, S$ be points in the interiors of the sides $A D, B C, A B, C D$ respectively, such that $P Q$ and $R S$ intersect at right angles. If $P Q=\frac{3 \sqrt{3}}{4}$, then $R S$ equals
$\frac{2}{\sqrt{3}}$
$\frac{3 \sqrt{3}}{4}$
$\frac{\sqrt{2}+1}{2}$
$4-2 \sqrt{2}$
Let the circumcentre of a triangle with vertices $A ( a , 3), B ( b , 5)$ and $C ( a , b ), ab >0$ be $P (1,1)$. If the line $AP$ intersects the line $BC$ at the point $Q \left( k _{1}, k _{2}\right)$, then $k _{1}+ k _{2}$ is equal to.
One diagonal of a square is along the line $8x - 15y = 0$ and one of its vertex is $(1, 2)$ Then the equation of the sides of the square passing through this vertex, are
Two consecutive sides of a parallelogram are $4x + 5y = 0$ and $7x + 2y = 0$. If the equation to one diagonal is $11x + 7y = 9$, then the equation to the other diagonal is :-
The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is