निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा

212179-q

  • [KVPY 2016]
  • A

    $2$

  • B

    $\sqrt{2}$

  • C

    $1$

  • D

    $\frac{1}{\sqrt{2}}$

Similar Questions

यदि त्रिघातीय समीकरण $a{x^3} + b{x^2} + cx + d = 0$ के मूल गुणोत्तर श्रेणी में हैं, तब

श्रेणी $.9 + .09 + .009.........$ के $100$ पदों का योग होगा

यदि $x > 1,\;y > 1,{\rm{ }}z > 1$ गुणोत्तर श्रेणी में ($G.P$) हों, तो  $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ होंगे

  • [IIT 1998]

वृत्त $C_0$ की त्रिज्या $1$ है। प्रत्येक पूर्णांक $n \geq 1$ के लिए $C_n$ एक ऐसा वृत्त है जिसका क्षेत्रफल उस वर्ग के क्षेत्रफल के बराबर है जो $C_{n-1}$ में अंतर्गत किया गया है। ऐसी स्थिति में दी गई अनंत श्रेणी $\sum_{i=0}^{\infty}\left(C_i\right.$ का क्षेत्रफल $)$ का मान होगा:

  • [KVPY 2014]

यदि $(y - x),\,\,2(y - a)$ तथा $(y - z)$ हरात्मक श्रेणी में हों, तो $x - a,$ $y - a,$ $z - a$ होंगे