Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is
$0$
$5$
$30$
$36$
Let $\lambda \in R$ and let the equation $E$ be $| x |^2-2| x |+|\lambda-3|=0$. Then the largest element in the set $S =$ $\{ x +\lambda: x$ is an integer solution of $E \}$ is $..........$
If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is
The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation