If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation

  • A

    ${y^3} + y + 2 = 0$

  • B

    ${y^3} - {y^2} - y - 2 = 0$

  • C

    ${y^3} + 3{y^2} - y - 3 = 0$

  • D

    ${y^3} + 4{y^2} + 5y + 20 = 0$

Similar Questions

Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to

The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are

The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$  is

  • [JEE MAIN 2017]

The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$

  • [JEE MAIN 2021]

Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.

  • [JEE MAIN 2023]