If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is

  • [KVPY 2011]
  • A

    $a^3+a^2-3 a-2-b$

  • B

    $a^3-a^2-3 a+4-b$

  • C

    $a^3-a^2+3 a-6-b$

  • D

    $a^3+a^2+3 a-16-b$

Similar Questions

Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is

  • [JEE MAIN 2014]

Consider the following two statements

$I$. Any pair of consistent liner equations in two variables must have a unique solution.

$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,

  • [KVPY 2018]

Let $\lambda \in R$ and let the equation $E$ be $| x |^2-2| x |+|\lambda-3|=0$. Then the largest element in the set $S =$ $\{ x +\lambda: x$ is an integer solution of $E \}$ is $..........$

  • [JEE MAIN 2023]

The roots of the equation ${x^4} - 2{x^3} + x = 380$ are