If $f (x) =$ $\int\limits_0^{\pi /2} \frac{{\ell \,n\,\,(1\,\, + \,\,x\,\,{{\sin }^2}\,\,\theta )}}{{{{\sin }^2}\,\,\theta }}$ $d\, \theta$ , $x \geq 0$ then :

  • A
    $f (t) = \pi$ $\left( {\sqrt {t\,\, + \,\,1} \,\, - \,\,1} \right)$
  • B
    $f ‘ (t) = \frac{\pi }{{2\,\sqrt {t\,\, + \,\,1} }}$
  • C
    $f (x)$ cannot be determined
  • D
    Both $(A)$ and $(B)$

Similar Questions

The number of continuous functions $f:[0,1] \rightarrow R$ that satisfy $\int \limits_0^1 x f(x) d x=\frac{1}{3}+\frac{1}{4} \int \limits_0^1(f(x))^2 d x$ is

  • [KVPY 2017]

Let $\operatorname{Max} \limits _{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ and $\operatorname{Min} \limits _ {0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$

If $\int\limits_{\beta-\frac{8}{3}}^{2 a-1} \operatorname{Max}\left\{\frac{9- x ^{2}}{5- x }, x \right\} dx =\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ then $\alpha_{1}+\alpha_{2}$ is equal to

  • [JEE MAIN 2022]

The true set of values of $‘a’$ for which the inequality $\int\limits_a^0 {} (3^{ -2x} - 2. 3^{-x})\, dx \geq 0$ is true is:

The number of continuous functions $f:[0,1] \rightarrow(-\infty, \infty)$ satisfying the condition $\int \limits_0^1(f(x))^2 dx =2 \int_0^1 f( x ) dx$ is

  • [KVPY 2021]

If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to

  • [AIEEE 2012]