किसी रेखा के अक्षों से कटे भाग के मध्य बिन्दु के निर्देशांक $(3, 2)$ हैं, तो रेखा का समीकरण होगा
$2x + 3y = 12$
$3x + 2y = 12$
$4x - 3y = 6$
$5x - 2y = 10$
बिन्दुओं $({a_1},{b_1})$ तथा $({a_2},{b_2})$ से समान दूरी पर स्थित किसी बिन्दु का बिन्दुपथ $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$ है, तब $‘c’$ का मान है
शीर्षों $A (2,3), B (4,-1)$ और $C (1,2)$ वाले त्रिभुज $ABC$ के शीर्ष $A$ से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।
एक सरल रेखा, $\mathrm{x}$-अक्ष तथा $\mathrm{y}$-अक्ष की धनात्मक दिशाओं पर क्रमशः $\mathrm{OA}=\mathrm{a}$ तथा $\mathrm{OB}=\mathrm{b}$ अंतःखंड़ करती है। यदि मूलबिंदु $\mathrm{O}$ से इस रेखा पर अभिलंब $\mathrm{y}$-अक्ष की धनात्मक दिशा से $\frac{\pi}{6}$ का कोण बनाता है तथा $\triangle \mathrm{OAB}$ का क्षेत्रफल $\frac{98}{3} \sqrt{3}$ है, तो $\mathrm{a}^2-\mathrm{b}^2$ बराबर है :
त्रिभुज, जिसके शीर्ष $P(2,\;2),\;Q(6,\; - \;1)$ व $R(7,\;3)$ हैं, की माध्यिका $PS$ है। बिन्दु $(1, -1)$ से जाने वाली तथा माध्यिका $PS$ के समान्तर रेखा का समीकरण है
किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं