Let $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ be such that $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ is a tautology. Then $\Delta$ is equal to
$\wedge$
$\vee$
$\Rightarrow$
$\Leftrightarrow$
Negation of "If India wins the match then India will reach in the final" is :-
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to
The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to