Let $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ then $a _{1}+ a _{3}+ a _{5}+\ldots+ a _{37}$ is equal to

  • [JEE MAIN 2021]
  • A

    $2^{20}\left(2^{20}-21\right)$

  • B

    $2^{19}\left(2^{20}-21\right)$

  • C

    $2^{19}\left(2^{20}+21\right)$

  • D

    $2^{20}\left(2^{20}+21\right)$

Similar Questions

The value of $^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ is

The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is

The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-

If $n$ is an integer greater than $1$, then $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $

  • [IIT 1972]

$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $