Let $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ where each $X_{i}$ contains $10$ elements and each $Y_{i}$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_{i}$ 's and exactly $6$ of sets $Y_{i}$ 's, then $n$ is equal to
$45$
$15$
$50$
$30$
If $A = \{x, y\}$ then the power set of $A$ is
$2n (A / B) = n (B / A)$ and $5n (A \cap B) = n (A) + 3n (B) $, where $P/Q = P \cap Q^C$ . If $n (A \cup B) \leq 10$ , then the value of $\frac{{n\ (A).n\ (B).n\ (A\ \cap\ B)}}{8}$ is
Suppose ${A_1},\,{A_2},\,{A_3},........,{A_{30}}$ are thirty sets each having $5$ elements and ${B_1},\,{B_2}, ......., B_n$ are $n$ sets each with $3$ elements. Let $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} = S$ and each elements of $S$ belongs to exactly $10$ of the $A_i's$ and exactly $9$ of the $B_j's$. Then $n$ is equal to
Let $A=\{n \in N: H . C . F .(n, 45)=1\}$ and Let $B=\{2 k: k \in\{1,2, \ldots, 100\}\}$. Then the sum of all the elements of $A \cap B$ is