વિધેય $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ માટે $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ થાય જો $\mathrm{f}(1)=2$ અને $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ હોય તો $n$ કિમત મેળવો જ્યાં $\mathrm{g}(\mathrm{n})=20$ થાય 

  • [JEE MAIN 2020]
  • A

    $5$

  • B

    $9$

  • C

    $20$

  • D

    $4$

Similar Questions

ધારોકે $A =\{1,2,3,4,5\}$ અને $B =\{1,2,3,4,5,6\}$. તો $f(1)+f(2)=f(4)-1$ નું સમાધાન કરતા વિધેયો $f: A \rightarrow B$ ની સંખ્યા $=.........$

  • [JEE MAIN 2023]

વિધેય $f:\left[ { - 1,1} \right] \to R$ જ્યા $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ ધ્યાનમા લ્યો. જ્યા $\alpha _i\ 's$ એ ધન અચળ હોય અને  $n \in N < 100$ હોય તો $f(x)$ એ .................. વિધેય છે.

વિધેય $f$ એ દરેક વાસ્તવિક $x \ne 1$ માટે સમીકરણ $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ નું પાલન કરે છે તો $f(7)$ મેળવો.

જો વિધેય $f(x) = \frac{1}{4}{x^2} + bx + 10$ માટે $f\left( {12 - x} \right) = f\left( x \right)\,\forall \,x\, \in \,R$ , હોય તો $'b'$ નિ કિમત મેળવો.

જો $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ નો વિસ્તારગણ ($a, b$] હોય તો ($a +b$) ની કિમત ........ મળે.