જો $[ x ]$ એ મહતમ પૃણાંક વિધેય દર્શાવે છે . જો  $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, તો  $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $2^{ n -1}$

  • C

    $1$

  • D

    $n$

Similar Questions

પ્રાકૃતિક સંખ્યા $m,n$ માટે, ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$માટે $a_1= a_2=10,$ તો $(m,n)$ =______. 

  • [AIEEE 2006]

જો $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$ હોય  તો  $L$ ની કિમંત  $.....$ થાય.

  • [JEE MAIN 2022]

જો $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ અને  $b = \mathop {\lim }\limits_{\theta  \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ હોય તો $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ ની કિમત મેળવો 

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, તો $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $

$(1+x)^{10}$ ના દ્વિપદી વિસ્તરણમાં $x^{10-r}$ નો સણગુણક જો $a_r$ હોય., તો $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2=...............$

  • [JEE MAIN 2023]