From the sets given below, select equal sets:

$A=\{2,4,8,12\}, B=\{1,2,3,4\}, C=\{4,8,12,14\}, D=\{3,1,4,2\}$

$E=\{-1,1\}, F=\{0, a\}, G=\{1,-1\}, H=\{0,1\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\{2,4,8,12\} ; B=\{1,2,3,4\} ; C=\{4,8,12,14\}$

$D=\{3,1,4,2\} ; E=\{-1,1\} ; F=\{0, a\}$

$G=\{1,-1\} ; H=\{0,1\}$

It can be seen that

$8 \in A, 8 \notin B, 8 \notin D, 8 \notin E, 8 \notin F, 8 \notin G, 8 \notin H$

$\Rightarrow A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H$

Also, $2 \in A, 2 \notin C$

$\therefore A \neq C$

$3 \in B, 3 \notin C, 3 \notin E, 3 \notin F, 3 \notin G, 3 \notin H$

$\therefore B \neq C, B \neq E, B \neq F, B \neq G, B \neq H$

$12 \in C, 12 \notin D, 12 \notin E, 12 \notin F, 12 \notin G, 12 \notin H$

$\therefore C \neq D, C \neq E, C \neq F, C \neq G, C \neq H$

$4 \in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$

$\therefore D \neq E, D \neq F, D \neq G, D \neq H$

Similarly, $E \neq F, E \neq G, E \neq H$

$F \neq G, F \neq H, G \neq H$

The order in which the elements of a set are listed is not significant.

$\therefore B=D$ and $E=G$

Hence, among the given sets, $B = D$ and $E = G$.

Similar Questions

List all the subsets of the set $\{-1,0,1\}.$

Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:

$ 0\, ........\, A $

Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?

$1 \in A$

State which of the following sets are finite or infinite :

$\{ x:x \in N$ and ${x^2} = 4\} $

Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?

$\{1,2,5\}\subset A$