मान लीजिए कि $A =\{1,2\}$ और $B =\{3,4\} . A$ से $B$ में संबंधों की संख्या ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$

Since $n( A \times B )=4,$ the number of subsets of $A \times B$ is $2^{4} .$

Therefore, the number of relations from $A$ into $B$ will be $2^{4}$.

Similar Questions

मान लीजिए कि $A =\{1,2,3, \ldots, 14\} \cdot R =\{(x, y): 3 x-y=0,$ जहाँ $x, y \in A \}$ द्वारा, $A$ से $A$ का एक संबंध $R$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।

मान लीजिए कि $A =\{x, y, z\}$ और $B =\{1,2\}, A$ से $B$ के संबंधों की संख्या ज्ञात कीजिए।

मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि

$(a, a) \in R$ सभी $a \in Q$ के लिए

मान लीजिए कि $A =\{1,2,3,4,5,6\} . R =\{(x, y): y=x+1\}$ द्वारा $A$ से $A$ में एक संबंध परिभाषित कीजिए

$R$ के प्रांत, सहप्रांत तथा परिसर लिखिए

मान लीजिए कि $A =\{1,2,3,4,6\} .$ मान लीजिए कि $R , A$ पर $\{(a, b): a, b \in A ,$ संख्या $a$ संख्या $b$ को यथावथ विभाजित करती है $\}$ द्वारा परिभाषित एक संबंध है। $R$ का प्रांत ज्ञात कीजिए