Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is
$0.02$
$0.01$
$0.20$
$0.10$
If $P(A) = 0.25,\,\,P(B) = 0.50$ and $P(A \cap B) = 0.14,$ then $P(A \cap \bar B)$ is equal to
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( A \cap B ^{\prime}\right)$ .
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively
A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.
If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $