Let $\mathrm{C}$ be the centroid of the triangle with vertices $(3,-1),(1,3)$ and $(2,4) .$ Let $P$ be the point of intersection of the lines $x+3 y-1=0$ and $3 \mathrm{x}-\mathrm{y}+1=0 .$ Then the line passing through the points $\mathrm{C}$ and $\mathrm{P}$ also passes through the point
$(7, 6)$
$(-9, -6)$
$(-9, -7)$
$(9, 7)$
In a triangle $ABC,$ side $AB$ has the equation $2 x + 3 y = 29$ and the side $AC$ has the equation , $x + 2 y = 16$ . If the mid - point of $BC$ is $(5, 6)$ then the equation of $BC$ is :
The equations of two sides $\mathrm{AB}$ and $\mathrm{AC}$ of a triangle $\mathrm{ABC}$ are $4 \mathrm{x}+\mathrm{y}=14$ and $3 \mathrm{x}-2 \mathrm{y}=5$, respectively. The point $\left(2,-\frac{4}{3}\right)$ divides the third side $\mathrm{BC}$ internally in the ratio $2: 1$. The equation of the side $\mathrm{BC}$ is :
A pair of straight lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ are forming a square. Co-ordinates of the centre of the circle inscribed in the square are
In a triangle $ABC$, coordianates of $A$ are $(1, 2)$ and the equations of the medians through $B$ and $C$ are $x + y = 5$ and $x = 4$ respectively. Then area of $\Delta ABC$ (in sq. units) is
The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is