Let $\mathrm{C}$ be the centroid of the triangle with vertices $(3,-1),(1,3)$ and $(2,4) .$ Let $P$ be the point of intersection of the lines $x+3 y-1=0$ and $3 \mathrm{x}-\mathrm{y}+1=0 .$ Then the line passing through the points $\mathrm{C}$ and $\mathrm{P}$ also passes through the point
$(7, 6)$
$(-9, -6)$
$(-9, -7)$
$(9, 7)$
The equation of perpendicular bisectors of the sides $AB$ and $AC$ of a triangle $ABC$ are $x - y + 5 = 0$ and $x + 2y = 0$ respectively. If the point $A$ is $(1,\; - \;2)$, then the equation of line $BC$ is
The triangle formed by ${x^2} - 9{y^2} = 0$ and $x = 4$ is
In a rectangle $A B C D$, the coordinates of $A$ and $B$ are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribing circle of $A B C D$ has equation $2 x-y+4=0$. Then, the area of the rectangle is
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to
Let $O=(0,0)$ : let $A$ and $B$ be points respectively on $X$-axis and $Y$-axis such that $\angle O B A=60^{\circ}$. Let $D$ be a point in the first quadrant such that $A D$ is an equilateral triangle. Then, the slope of $D B$ is