Let $S$ be the set of all $\alpha  \in  R$ such that the equation, $cos\,2 x + \alpha  \,sin\, x = 2\alpha  -7$ has a solution. Then $S$ is equal to

  • [JEE MAIN 2019]
  • A

    $[3, 7]$

  • B

    $R$

  • C

    $[2, 6]$

  • D

    $[1, 4]$

Similar Questions

The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are

Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha  + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is

Let $\alpha, \beta ; \alpha>\beta$, be the roots of the equation $x^2-\sqrt{2} x-\sqrt{3}=0$. Let $P_n=\alpha^n-\beta^n, n \in N$. Then $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$ is equal to :

  • [JEE MAIN 2024]

Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to

Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to