શ્રેણી $\quad 2,2 \sqrt{2}, 4, \ldots$ નું કેટલામું પદ $128$ થાય ?
The given sequence is $2,2 \sqrt{2}, 4 \ldots \ldots$ is $128 ?$
Here, $a=2$ and $r=(2 \sqrt{2}) / 2=\sqrt{2}$
Let the $n^{\text {th }}$ term of the given sequence be $128 .$
$a_{n}=a r^{n-1}$
$\Rightarrow(2)(\sqrt{2})^{n-1}=128$
$\Rightarrow(2)(2)^{\frac{n-1}{2}}=(2)^{7}$
$\Rightarrow(2)^{\frac{n-1}{2}+1}=(2)^{7}$
$\therefore \frac{n-1}{2}+1=7$
$\Rightarrow \frac{n-1}{2}=6$
$\Rightarrow n-1=12$
$\Rightarrow n=13$
Thus, the $13^{\text {th }}$ term of the given sequence is $128$
ધારોકે $\mathrm{ABC}$ એક સમબાજુ ત્રિકોણ છે. આપેલ ત્રિકોણ $\mathrm{ABC}$ ની બધી બાજુઓના મધ્યબિંદુઓને જોડીને એક નવો ત્રિકોણ બનાવવામાં આવે છે અને આ પ્રક્રિયાનું અનંત વખત પુનરાવર્તન કરવામાં આવે છે. જો આ પ્રક્કિયામાં બનતા તમામ ત્રિકોણોની પરિમિતિઓ નો સરવાળો $P$ હોય અને ક્ષેત્રફળોનો સરવાળો $Q$ હોય, તો ....................
અનંત સમગુણોત્તર શ્રેણીના પદોનો સરવાળો $3$ અને તેમના વર્ગનો સરવાળો પદ $3$ થાય, તો શ્રેણીનું પ્રથમ પદ અને સામાન્ય ગુણોત્તર કેટલો થાય?
શ્રેણી $0.9 + .09 + .009 …$ ના $100$ પદોનો સરવાળો શું થાય?
ધારો કે ચાર જુદી જુદી ધન સંખ્યાઓ $a_2$, $a_2$, $a_3$, $a_4$ સમગુણોત્તર શ્રેણીમાં છે. $b_1$ = $a_1$, $b_2$ = $b_1$ + $a_2$, $b_3$ = $b_2$ + $a_3$ અને $b_4$ = $b_3$ + $a_4$ લો.
વિધાન $- I$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સમાંતર શ્રેણીમાં નથી કે સમગુણોત્તરમાં પણ નથી.
વિધાન $- II$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સ્વરીત શ્રેણીમાં છે.
$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $