અહી $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ અને $A=\{x \in R: f(x)=1\} $ હોય તો $A$ માં  ..  . .  . 

  • [KVPY 2019]
  • A

    માત્ર એકજ ઘટક છે.

  • B

    માત્ર બેજ ઘટક છે.

  • C

    માત્ર ત્રણ ઘટક છે.

  • D

    અનંત ઘટક છે.

Similar Questions

વિધેય $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ નો વિસ્તાર મેળવો.

વાસ્તવિક વિધેય $f(x)$ એ સમીકરણ $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ નું પાલન કરે છે જ્યાં $a$ એ અચળ છે અને $f(0) = 1$, $f(2a - x) = . ...$

  • [AIEEE 2005]

વિધેય $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ ને વ્યાખ્યાયિત થવા માટે $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ માંથી મહતમ અંતરાલ મેળવો.

  • [AIEEE 2007]

જો વિધેય $f : R \rightarrow  R$ એ માટે $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \  \forall  x \in R$ વ્યાખ્યાયિત હોય તો $f(5)$ ની કિમત મેળવો.

અહી $f: R \rightarrow R$ એ મુજબ વ્યાખ્યાયિત છે  $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ હોય તો $x=0$ આગળ $f$ એ . . .  

 

  • [KVPY 2019]