माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है 

  • [JEE MAIN 2019]
  • A

    $5^4$

  • B

    $4(5^2)$

  • C

    $5^3$

  • D

    $2(5^2)$

Similar Questions

गुणोत्तर श्रेणी $2,8,32, \ldots$ का कौन-सा पद $131072$ है ?

यदि किसी गुणोत्तर श्रेणी का तीसरा पद $4$ हो, तो इसके प्रथम $5$ पदों का गुणनफल होगा

  • [IIT 1982]

यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तब ${3^a},\;{3^b},\;{3^c}$ होंगे

अनंत गुणोत्तर श्रेणी $\frac{{\sqrt 2  + 1}}{{\sqrt 2  - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ के पदों का योग होगा

माना धनात्मक संख्याएँ $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4$ तथा $\mathrm{a}_5$ एक $G.P.$ में है। माना इसके माध्य तथा प्रसरण क्रमशः $\frac{31}{10}$ तथा $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असभाज्य हैं। यदि इन संख्याओं के व्युत्क्रमों का माध्य $\frac{31}{40}$ है तथा $a_3+a_4+a_5=14$ है, तो $m+n$ बराबर है_____________।

  • [JEE MAIN 2023]