ऐसी $3$ संख्याएँ ज्ञात कीजिए जिनको $1$ तथा $256$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
Let $G_{1}, G_{2}, G_{3}$ be three numbers between $1$ and $256$ such that $1, G _{1}, G _{2}, G _{3}, 256$ is a $G.P.$
Therefore $\quad 256=r^{4}$ giving $r=\pm 4$ (Taking real roots only)
For $r=4,$ we have $G _{1}=a r=4, G _{2}=a r^{2}=16, G _{3}=a r^{3}=64$
Similarly, for $r=-4,$ numbers are $-4,16$ and $-64$ Hence, we can insert $4,16,64$ between $1$ and $256$ so that the resulting sequences are in $G.P.$
अनुक्रम का कौन सा पद.
$2,2 \sqrt{2}, 4, \ldots ; 128$ है ?
श्रेणी $.9 + .09 + .009.........$ के $100$ पदों का योग होगा
यदि $a,\,b,\,c$ गुणोत्तर श्रेणी में हों, तो
दो राशियों $a$ और $b$ के बीच $n$ गुणोत्तर माध्य स्थापित किये जाएँ, तो $n$ वाँ गुणोत्तर माध्य होगा
निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा