સમગુણોત્તર શ્રેણી બને તે રીતે $1$ અને $256$ વચ્ચે ત્રણ સંખ્યાઓ ઉમેરો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $G_{1}, G_{2}, G_{3}$ be three numbers between $1$ and $256$ such that $1, G _{1}, G _{2}, G _{3}, 256$ is a $G.P.$

Therefore $\quad 256=r^{4}$ giving $r=\pm 4$ (Taking real roots only)

For $r=4,$ we have $G _{1}=a r=4, G _{2}=a r^{2}=16, G _{3}=a r^{3}=64$

Similarly, for $r=-4,$ numbers are $-4,16$ and $-64$ Hence, we can insert $4,16,64$ between $1$ and $256$ so that the resulting sequences are in $G.P.$

Similar Questions

$n$  ધન પદો $x_1, x_2, ……. x _n $ નો સમગુણોત્તર મધ્યક = …….

જો $a, b, c, d$ અને $p$ એ શૂન્યેતર ભિન્ન વાસ્તવિક સંખ્યા એવી મળે કે જેથી  $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+ cd ) p +\left( b ^{2}+ c ^{2}+ d ^{2}\right)=0$ થાય તો 

  • [JEE MAIN 2020]

જો સમગુણોત્તર શ્રેણીના ચાર ધન ક્રમિક પદોના સરવાળા તથા ગુણાકાર અનુક્રમે $126$ અને $1296$ હોય, તો આવી દરેક સમગુણોત્તર શ્રેણીનાં સામાન્ય ગુણોત્તરોનો સરવાળો $.............$ છે.

  • [JEE MAIN 2023]

સમગુણોત્તર શ્રેણી  $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + .....\,$ ના ${\text{9}}$  પદોનો સરવાળો શોધો.

જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{r^2}}}\,\, = \,\,.........} $