Insert $6$ numbers between $3$ and $24$ such that the resulting sequence is an $A.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $A_{6}$ be six numbers between $3$ and $24$ such that $3, A _{1}, A _{2}, A _{3}, A _{4}, A _{5}, A _{6}, 24$ are in $A.P.$ Here, $a=3, b=24, n=8$

Therefore, $24=3+(8-1) d,$ so that $d=3$

Thus ${A_1} = a + d = 3 + 3 = 6;\quad $

${A_2} = a + 2d = 3 + 2 \times 3 = 9$

${A_3} = a + 3d = 3 + 3 \times 3 = 12;\quad $

${A_4} = a + 4d = 3 + 4 \times 3 = 15$

${A_5} = a + 5d = 3 + 5 \times 3 = 18;\quad $

${A_6} = a + 6d = 3 + 6 \times 3 = 21$

Hence, six numbers between $3$ and $24$ are $6,9,12,15,18$ and $21$

Similar Questions

The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is

Let $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto n terms. If the sum of the first six terms of an $A.P.$ with first term $- p$ and common difference $p$ is $\sqrt{2026 S_{2025}}$, then the absolute difference between $20^{\text {th }}$ and $15^{\text {th }}$ terms of the $A.P.$ is

  • [JEE MAIN 2025]

If the sum of first $11$ terms of an $A.P.$, $a_{1} a_{2}, a_{3}, \ldots$is $0\left(\mathrm{a}_{1} \neq 0\right),$ then the sum of the $A.P.$, $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ is $k a_{1},$ where $k$ is equal to 

  • [JEE MAIN 2020]

The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be

If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is

  • [JEE MAIN 2019]