In which of the following functions Rolle’s theorem is applicable ?
$ f(x) =\left\{ \begin{array}{l}x\,\,\,,\,\,0\, \le \,x\, < \,\,1\\0\,\,\,\,,\,\,\,\,\,\,\,\,\,x\,\, = 1\end{array} \right.$ on $[0, 1]$
$f(x) = \left\{ \begin{array}{l}\frac{{\sin x}}{x}\,\,,\, - \pi \, \le x\, < 0\\\,0\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,x\, = \,0\end{array} \right.$ on $[-\pi , 0]$
$f(x)= \frac{{{x^2} - x - 6}}{{x - 1}}$ on $[-2,3]$
$f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} - 5x + 6}}{{x - 1}}\,\,\,if\,\,x\, \ne 1,\,\,on\,[ - 2,3]\\ - 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x\, = 1\end{array} \right.$
Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$
Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$
Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$
Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$
If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then