In which of the following functions Rolle’s theorem is applicable ?
$ f(x) =\left\{ \begin{array}{l}x\,\,\,,\,\,0\, \le \,x\, < \,\,1\\0\,\,\,\,,\,\,\,\,\,\,\,\,\,x\,\, = 1\end{array} \right.$ on $[0, 1]$
$f(x) = \left\{ \begin{array}{l}\frac{{\sin x}}{x}\,\,,\, - \pi \, \le x\, < 0\\\,0\,\,\,\,\,\,\,\,\,,\,\,\,\,\,\,\,\,\,\,\,\,x\, = \,0\end{array} \right.$ on $[-\pi , 0]$
$f(x)= \frac{{{x^2} - x - 6}}{{x - 1}}$ on $[-2,3]$
$f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 2{x^2} - 5x + 6}}{{x - 1}}\,\,\,if\,\,x\, \ne 1,\,\,on\,[ - 2,3]\\ - 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x\, = 1\end{array} \right.$
Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?
If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............
Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.
Consider the following two statements:
$(A): f(x) \leq 1$, for all $x \in[2,4]$
$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$
Then,
If for $f(x) = 2x - {x^2}$, Lagrange’s theorem satisfies in $[0, 1]$, then the value of $c \in [0,\,1]$ is