Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$

Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$

Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$

  • [AIEEE 2012]
  • A

    Statement $1$ is false, Statement $2$ is true.

  • B

    Statement $1$ is true, Statement $2$ is false.

  • C

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$

  • D

    Statement $1$ is true, Statement $2$ is true, Statement $2$ is a correct explanation for Statement $1.$

Similar Questions

In which of the following functions Rolle’s theorem is applicable ?

Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to

Let $y = f (x)$ and $y = g (x)$ be two differentiable function in $[0,2]$ such that  $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ and $g(2) = 2$. If there exist atlellst one $c \in \left( {0,2} \right)$ such that $f'(c)=kg'(c)$,then $k$ must be

If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to

  • [JEE MAIN 2021]

If function $f(x) = x(x + 3) e^{-x/2} ;$ satisfies the rolle's theorem in the interval $[-3, 0],$ then find $C$