In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is
$5050$
$-5050$
$100$
$99$
The coefficient of $x^{91}$ in the series $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ is equal to -
Let $\alpha=\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(4 \mathrm{r}^2+2 \mathrm{r}+1\right)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ and $\beta=\left(\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1}\right)+\frac{1}{\mathrm{n}+1}$. If $140<\frac{2 \alpha}{\beta}<281$ then the value of $n$ is...............
Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to
The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is