${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $
$(2n + 1) (2n + 3) (2n + 5) ....... (4n - 1)$ is equal to :
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
If $n$ is an integer greater than $1$, then $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $