જો $C_{x} \equiv^{25} C_{x}$ અને $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . . 

જો  $\mathrm{b}$ એ  $\mathrm{a}$ ની સાપેક્ષે ઘણો નાનો છે કે જેથી  $\frac{b}{a}$ ની ત્રણ કે તેથી મોટી ઘાતાંકને $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b} \ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ પદાવલિમાં  અવગણી શકાય તો $\gamma$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) ની કિમંત  $2^{ n } . m$ હોય તો $n+m$ ની કિમંત મેળવો. કે જ્યાં  $m$ એ અયુગ્મ છે.

  • [JEE MAIN 2022]

જો $a$ અને $d$ બે સંકર સંખ્યા હોય તો શ્રેણી $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ ના $(n + 1)$ પદનો સરવાળો મેળવો.

જો ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} $ જ્યાં  $x\, \in \,R\,,\,x\, \ne \, - 1$  તો $a_{17}$ ની કિમત મેળવો. 

  • [JEE MAIN 2016]