${\left( {x - \frac{3}{{{x^2}}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद होगा
अस्तित्वहीन
$^9{C_2}$
$2268$
$-2268$
यदि ${(x + y)^n}$ के विस्तार में गुणांकों का योग $1024$ हो, तो विस्तार में सबसे बडे़ गुणांक का मान होगा
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y\right)^{6}$
यदि $(a+b)^{n}$ के प्रसार में प्रथम तीन पद क्रमशः $729,7290$ तथा $30375$ हों तो $a, b,$ और $n$ ज्ञात कीजिए।
${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद होगा
यदि $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ के प्रसार में $x^9$ का गुणांक एवं $\left(\alpha \mathrm{x}-\frac{1}{\beta \mathrm{x}^3}\right)^{11}$ के प्रसार में $\mathrm{x}^{-9}$ का गुणांक बराबर हैं तब $(\alpha \beta)^2$ बराबर है____________.