In the expansion of $\left(\frac{\mathrm{x}}{\cos \theta}+\frac{1}{\mathrm{x} \sin \theta}\right)^{16},$ if $\ell_{1}$ is the least value of the term independent of $x$ when $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ and $\ell_{2}$ is the least value of the term independent of $x$ when $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8},$ then the ratio $\ell_{2}: \ell_{1}$ is equal to
$1 : 8$
$1 : 16$
$8 : 1$
$16 : 1$
If the constant term, in binomial expansion of $\left(2 x^{r}+\frac{1}{x^{2}}\right)^{10}$ is $180,$ than $r$ is equal to $......$
The second, third and fourth terms in the binomial expansion $(x+a)^n$ are $240,720$ and $1080,$ respectively. Find $x, a$ and $n$
For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to
The coefficient of ${x^{100}}$ in the expansion of $\sum\limits_{j = 0}^{200} {{{(1 + x)}^j}} $ is
If the sum of the coefficients in the expansion of $(x - 2y + 3 z)^n,$ $n \in N$ is $128$ then the greatest coefficie nt in the exp ansion of $(1 + x)^n$ is