The second, third and fourth terms in the binomial expansion $(x+a)^n$ are $240,720$ and $1080,$ respectively. Find $x, a$ and $n$
Given that second term $T_{2}=240$
We have ${T_2} = {\,^n}{C_1}{x^{n - 1}} \cdot a$
So ${\,^n}{C_1}{x^{n - 1}} \cdot a = 240$ ..........$(1)$
Similarly ${\,^n}{C_2}{x^{n - 2}}{a^2} = 720$ ...........$(2)$
and $^{n} C_{x} x^{n-3} a^{3}=1080$ .............$(3)$
Dividing $(2)$ by $(1),$ we get
$\frac{{{\,^n}{C_2}{x^{n - 2}}{a^2}}}{{^n{C_1}{x^{n - 1}}a}} = \frac{{720}}{{240}}$ i.e., $\frac{(n-1) !}{(n-2) !} \cdot \frac{a}{x}=6$
or $\frac{a}{x}=\frac{6}{(n-1)}$ ...........$(4)$
Dividing $(3)$ by $(2),$ we have
$\frac{a}{x}=\frac{9}{2(n-2)}$ ...........$(5)$
From $(4)$ and $(5),$
$\frac{6}{n-1}=\frac{9}{2(n-2)}$ Thus, $n=5$
Hence, from $(1), 5 x^{4} a=240,$ and from $(4), \frac{a}{x}=\frac{3}{2}$
Solving these equations for $a$ and $x,$ we get $x=2$ and $a=3$
If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to
Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$
The coefficient of ${x^{53}}$ in the following expansion $\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$is
The absolute difference of the coefficients of $x^{10}$ and $x^7$ in the expansion of $\left(2 x^2+\frac{1}{2 x}\right)^{11}$ is equal to
For a positive integer $n,\left(1+\frac{1}{x}\right)^{n}$ is expanded in increasing powers of $x$. If three consecutive coefficients in this expansion are in the ratio, $2: 5: 12,$ then $n$ is equal to