બરાબર $1\,m$ લંબાઈના તારનો યંગ મોડ્યુલસ માપવાના એક પ્રયોગમાં $1\,kg$ ભાર લગાડતાં, તારની લંબાઈમાં થતો વધારો $0.4\,mm$ જેટલો વધારો $\pm 0.02\,mm$ ની અનિશ્ચિતતા સાથે નોંધવામાં આવે છે. તારનો વ્યાસ $\pm 0.01\,mm$ ની અનિશ્ચિતતા સાથે $0.4\,mm$ નોંધવામાં આવે છે. યંગ મોડયુલસના માપનમાં ત્રુટી $(\Delta Y ) \; x \times 10^{10}\,Nm ^{-2}$ મળે છે. $x$ નું મૂલ્ય કેટલું હશે?
($g=10\,ms ^{-2}$ લો.)
$25$
$20$
$2$
$8$
ગાણિતિક સૂત્રમાં સંખ્યાબંધ રાશિઓની કિંમતોનો ઉપયોગ થાય છે. રાશિ જે માપનામાં સૌથી વધુ ચોક્કસ અને સચોટ હોવો જોઈએ તે આમાંથી કઈ છે?
સાદા લોલકનો આવર્તકાળ $T =2 \pi \sqrt{\frac{\ell}{ g }}$ છે. $1\, mm$ ચોકસાઇથી લોલકની લંબાઈ માપતા $10\, cm$ મળે છે. $1\,s$ ની લઘુતમ માપશક્તિ વાળી ઘડિયાળથી માપતા $200$ દોલનનો સમય $100$ સેકન્ડ મળે છે. આ સાદા લોલક દ્વારા $g$ ના મૂલ્યને ચોકસાઈ સાથે માપતા પ્રતિશત ત્રુટી $x$ મળે છે.$x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું ($\%$ માં) હશે?
સ્ટોપ વોચની લઘુત્તમ માપ શક્તિ $\frac{1}{5}$ સેકન્ડ છે. લોલકના $20$ દોલન માટેનો સમય $25\;s $ નોંધાયો. આ માપનમાં મહત્તમ પ્રતિશત ત્રુટિ ........ $\%$ હશે .
ભૌતિક રાશિ $m$ જેને $m = \pi \tan \theta $ વડે દર્શાવવામાં આવે છે તેમાં પ્રતિશત ત્રુટિ $\theta $ $=$ .......... $^o$ હોય ત્યારે ન્યૂનતમ થાય. ($\theta $ માં ત્રુટિ અચળ રહે છે)
''સાધનનું લઘુતમ માપ શક્ય એટલું નાનું હોય તેવું સાધન વાપરવું હિતાવહ છે.” આ વિધાન સ્પષ્ટ કરો.