In an experiment, brass and steel wires of length $1\,m$ each with areas of cross section $1\,mm^2$ are used. The wires are connected in series and one end of the combined wire is connected to a rigid support and other end is subjected to elongation. The stress requires to produced a new elongation of $0.2\,mm$ is [Given, the Young’s Modulus for steel and brass are respectively $120\times 10^9\,N/m^2$ and $60\times 10^9\,N/m^2$ ]

  • [JEE MAIN 2019]
  • A

    $1.8\times 10^6\,N/m^2$

  • B

    $0.2\times 10^6\,N/m^2$

  • C

    $1.2\times 10^6\,N/m^2$

  • D

    None of these

Similar Questions

A load of $2 \,kg$ produces an extension of $1 \,mm$ in a wire of $3 \,m$ in length and $1 \,mm$ in diameter. The Young's modulus of wire will be .......... $Nm ^{-2}$

$A$ rod of length $1000\, mm$ and coefficient of linear expansion $a = 10^{-4}$ per degree is placed symmetrically between fixed walls separated by $1001\, mm$. The Young’s modulus of the rod is $10^{11} N/m^2$. If the temperature is increased by $20^o C$, then the stress developed in the rod is ........... $MPa$

A mild steel wire of length $1.0 \;m$ and cross-sectional area $0.50 \times 10^{-2} \;cm ^{2}$ is stretched, well within its elastic limit, horizontally between two pillars. A mass of $100 \;g$ is suspended from the mid-point of the wire. Calculate the depression at the midpoint.

The interatomic distance for a metal is $3 \times {10^{ - 10}}\,m$. If the interatomic force constant is $3.6 \times {10^{ - 9}}\,N/{{\buildrel _{\circ} \over {\mathrm{A}}}}$, then the Young's modulus in $N/{m^2}$ will be

The edge of an aluminium cube is $10\; cm$ long. One face of the cube is firmly fixed to a vertical wall. A mass of $100 \;kg$ is then attached to the opposite face of the cube. The shear modulus of aluminium is $25\; GPa$. What is the vertical deflection of this face?