A mild steel wire of length $1.0 \;m$ and cross-sectional area $0.50 \times 10^{-2} \;cm ^{2}$ is stretched, well within its elastic limit, horizontally between two pillars. A mass of $100 \;g$ is suspended from the mid-point of the wire. Calculate the depression at the midpoint.
Length of the steel wire $=1.0 m$
Area of cross-section, $A=0.50 \times 10^{-2} cm ^{2}-0.50 \times 10^{-6} m ^{2}$
A mass $100 g$ is suspended from its midpoint.
$m=100 g =0.1 kg$
Hence, the wire dips, as shown in the given figure.
Original length $= XZ$
Depression $=l$
The length after mass $m$, is attached to the wire $= XO + OZ$
Increase in the length of the wire:
$\Delta l=( XO + OZ )- XZ$
$XO = OZ =\left[(0.5)^{2}+l^{2}\right]^{\frac{1}{2}}$
$\therefore \Delta l=2\left[(0.5)^{2}+(l)^{2}\right]^{\frac{1}{2}}-1.0$
$=2 \times 0.5\left[1+\left(\frac{l}{0.5}\right)^{2}\right]^{\frac{1}{2}}-1.0$
Expanding and neglecting higher terms, we get:
$\Delta l=\frac{l^{2}}{0.5}$
Strain $=\frac{\text { Increase in length }}{\text { Original length }}$
Let $T$ be the tension in the wire.
$\therefore m g=2 T \cos \theta$
Using the figure, it can be written as
$\cos \theta=\frac{1}{\left((0.5)^{2}+l^{2}\right)^{\frac{1}{2}}}$
$=\frac{1}{(0.5)\left(1+\left(\frac{l}{0.5}\right)^{2}\right)^{\frac{1}{2}}}$
Expanding the expression and eliminating the higher terms
$\cos \theta=\frac{1}{(0.5)\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)}$
$\left(1+\frac{l^{2}}{0.5}\right)=1$ for small $l$
$\therefore \cos \theta=\frac{l}{0.5}$
$\therefore T=\frac{m g}{2\left(\frac{l}{0.5}\right)}=\frac{m g \times 0.5}{2 l}=\frac{m g}{4 l}$
Stress $=\frac{\text { Tension }}{\text { Area }}=\frac{m g}{4 l \times A}$
Young's modulus $=\frac{\text { Stress }}{\text { Strain }}$
$Y=\frac{m g \times 0.5}{4 l \times A \times l^{2}}$
$I=\sqrt[3]{\frac{m g \times 0.5}{4 Y A}}$
Young's modulus of steel, $Y=2 \times 10^{11} Pa$
$\therefore l=\sqrt{\frac{0.1 \times 9.8 \times 0.5}{4 \times 2 \times 10^{11} \times 0.50 \times 10^{-6}}}$
$=0.0106 m$
Hence, the depression at the midpoint is $0.0106 m$
When a stress of $10^8\,Nm^{-2}$ is applied to a suspended wire, its length increases by $1 \,mm$. Calculate Young’s modulus of wire.
A block of weight $100 N$ is suspended by copper and steel wires of same cross sectional area $0.5 cm ^2$ and, length $\sqrt{3} m$ and $1 m$, respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are $30^{\circ}$ and $60^{\circ}$, respectively. If elongation in copper wire is $\left(\Delta \ell_{ C }\right)$ and elongation in steel wire is $\left(\Delta \ell_{ s }\right)$, then the ratio $\frac{\Delta \ell_{ C }}{\Delta \ell_{ S }}$ is. . . . . .
[Young's modulus for copper and steel are $1 \times 10^{11} N / m ^2$ and $2 \times 10^{11} N / m ^2$ respectively]
A bar is subjected to axial forces as shown. If $E$ is the modulus of elasticity of the bar and $A$ is its crosssection area. Its elongation will be
Four identical hollow cylindrical columns of mild steel support a big structure of mass $50,000 \;kg$. The inner and outer radii of each column are $30$ and $60\; cm$ respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
A wire of cross sectional area $A$, modulus of elasticity $2 \times 10^{11} \mathrm{Nm}^{-2}$ and length $2 \mathrm{~m}$ is stretched between two vertical rigid supports. When a mass of $2 \mathrm{~kg}$ is suspended at the middle it sags lower from its original position making angle $\theta=\frac{1}{100}$ radian on the points of support. The value of $A$ is. . . . . . $\times 10^{-4} \mathrm{~m}^2$ (consider $\mathrm{x}<\mathrm{L}$ ).
(given: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )