The edge of an aluminium cube is $10\; cm$ long. One face of the cube is firmly fixed to a vertical wall. A mass of $100 \;kg$ is then attached to the opposite face of the cube. The shear modulus of aluminium is $25\; GPa$. What is the vertical deflection of this face?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Shear modulus, $\eta=\frac{\text { Shear stress }}{\text { Shear strain }}=\frac{\frac{F}{A}}{\frac{L}{\Delta L}}$

$\therefore \Delta L=\frac{F L}{A \eta}$

$=\frac{980 \times 0.1}{10^{-2} \times\left(25 \times 10^{9}\right)}$

$=3.92 \times 10^{-7} m$

The vertical deflection of this face of the cube is $3.92 \times 10^{-7} \;m$

Similar Questions

The force constant of a wire does not depend on

The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress ?

A wire of cross sectional area $A$, modulus of elasticity $2 \times 10^{11} \mathrm{Nm}^{-2}$ and length $2 \mathrm{~m}$ is stretched between two vertical rigid supports. When a mass of $2 \mathrm{~kg}$ is suspended at the middle it sags lower from its original position making angle $\theta=\frac{1}{100}$ radian on the points of support. The value of $A$ is. . . . . .  $\times 10^{-4} \mathrm{~m}^2$ (consider $\mathrm{x}<\mathrm{L}$ ).

(given: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )

  • [JEE MAIN 2024]

An area of cross-section of rubber string is $2\,c{m^2}$. Its length is doubled when stretched with a linear force of $2 \times {10^5}$dynes. The Young's modulus of the rubber in $dyne/c{m^2}$ will be

A load $W$ produces an extension of $1mm$ in a thread of radius $r.$ Now if the load is made $4W$ and radius is made $2r$ all other things remaining same, the extension will become..... $mm$