In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is $10$ and one of the foci is at $(0, 5\sqrt 3 )$, then the length of its latus rectum is

  • [JEE MAIN 2019]
  • A

    $6$

  • B

    $5$

  • C

    $8$

  • D

    $10$

Similar Questions

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse ${x^2} + 2{y^2} = 2$ between the co-ordinates axes, is

  • [IIT 2004]

The eccentricity of an ellipse whose length of latus rectum is equal to distance between its foci, is

Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle 

Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .

If $\frac{{\sqrt 3 }}{a}x + \frac{1}{b}y = 2$ touches the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ then its, eccentric angle $\theta $ is equal to: ................ $^o$