In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $a_{m}=a+(m-1) d=n,$        ......$(1)$

and $\quad a_{n}=a+(n-1) d=m$          .........$(2)$

Solving $(1)$ and $(2),$ we get

$(m-n) d=n-m,$ or $d=-1,$          ...........$(3)$

and $\quad a=n+m-1$             ...........$(4)$

Therefore $\quad a_{p}=a+(p-1) d$

$=n+m-1+(p-1)(-1)=n+m-p$

Hence, the $p^{\text {th }}$ term is $n+m-p$

Similar Questions

If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $

  • [IIT 1982]

Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .

  • [JEE MAIN 2021]

If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to

Let $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto n terms. If the sum of the first six terms of an $A.P.$ with first term $- p$ and common difference $p$ is $\sqrt{2026 S_{2025}}$, then the absolute difference between $20^{\text {th }}$ and $15^{\text {th }}$ terms of the $A.P.$ is

  • [JEE MAIN 2025]

Find the $7^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n^{2}}{2^{n}}$