In a hydrogen atom, an electron moves in a circular orbit of radius $5.2 \times {10^{ - 11}}\,m$ and produces a magnetic induction of $12.56\, T$ at its nucleus. The current produced by the motion of the electron will be (Given ${\mu _0} = 4\pi \times {10^{ - 7}}\,Wb/A - m)$

  • A

    $6.53 \times {10^{ - 3}}\,ampere$

  • B

    $13.25 \times {10^{ - 10}}\,ampere$

  • C

    $9.6 \times {10^6}\,ampere$

  • D

    $1.04 \times {10^{ - 3}}\,ampere$

Similar Questions

Two concentric circular loops, one of radius $R$ and the other of radius $2 R$, lie in the $x y$-plane with the origin as their common center, as shown in the figure. The smaller loop carries current $I_1$ in the anti-clockwise direction and the larger loop carries current $I_2$ in the clockwise direction, with $I_2>2 I_1 . \vec{B}(x, y)$ denotes the magnetic field at a point $(x, y)$ in the $x y$-plane. Which of the following statement($s$) is(are) current?

$(A)$ $\vec{B}(x, y)$ is perpendicular to the $x y$-plane at any point in the plane

$(B)$ $|\vec{B}(x, y)|$ depends on $x$ and $y$ only through the radial distance $r=\sqrt{x^2+y^2}$

$(C)$ $|\vec{B}(x, y)|$ is non-zero at all points for $r$

$(D)$ $\vec{B}(x, y)$ points normally outward from the $x y$-plane for all the points between the two loops

  • [IIT 2021]

Charge $q$ is uniformly spread on a thin ring of radius $R.$ The ring rotates about its axis with a uniform frequency $f\, Hz.$ The magnitude of magnetic induction at the center of the ring is

  • [AIPMT 2010]

Consider a tightly wound $100$ turn coil of radius $10 \;cm$, carrying a current of $1 \;A$. What is the magnitude of the magnetic field at the centre of the coil?

A uniform wire is bent in the form of a circle of radius $R$. A current $I$ enters at $A$ and leaves at $C$ as shown in the figure :If the length $ABC$ is half of the length $ADC,$ the magnetic field at the centre $O$ will be

Unit of magnetic permeability is