In a human pyramid in a circus, the entire weight of the balanced group is supported by the legs of a performer who is lying on his back. The combined mass of all the persons performing the act, and the tables, plaques etc. Involved is $280\; kg$. The mass of the performer lying on his back at the bottom of the pyramid is $60\; kg$. Each thighbone (femur) of this performer has a length of $50\; cm$ and an effective radius of $2.0\; cm$. Determine the amount by which each thighbone gets compressed under the extra load.
Answer Total mass of all the performers, tables,
$\text { plaques etc. } \quad=280 kg$
Mass of the performer $=60 kg$ Mass supported by the legs of the performer at the bottom of the pyramid
$=280-60=220 kg$
Weight of this supported mass
$=220 kg wt .=220 \times 9.8 N =2156 N$
Weight supported by each thighbone of the performer $=1 / 2(2156) N =1078 N$
the Young's modulus for bone is given by
$Y=9.4 \times 10^{9} N m ^{-2}$
Length of each thighbone $L=0.5 m$ the radius of thighbone $=2.0 cm$ Thus the cross-sectional area of the thighbone
$A=\pi \times\left(2 \times 10^{-2}\right)^{2} m ^{2}=1.26 \times 10^{-3} m ^{2}$
the compression in each thighbone $(\Delta L)$ can be computed as
$\Delta L =[(F \times L) /(Y \times A)]$
$=\left[(1078 \times 0.5) /\left(9.4 \times 10^{9} \times 1.26 \times 10^{-3}\right)\right]$
$=4.55 \times 10^{5} m \text { or } 4.55 \times 10^{-3} cm .$
This is a very small change! The fractional decrease in the thighbone is
$\Delta L / L=0.000091$ or $0.0091 \%$
Young's modulus is determined by the equation given by $\mathrm{Y}=49000 \frac{\mathrm{m}}{\ell} \frac{\text { dyne }}{\mathrm{cm}^2}$ where $\mathrm{M}$ is the mass and $\ell$ is the extension of wre used in the experiment. Now error in Young modules $(\mathrm{Y})$ is estimated by taking data from $M-\ell$ plot in graph paper. The smallest scale divisions are $5 \mathrm{~g}$ and $0.02$ $\mathrm{cm}$ along load axis and extension axis respectively. If the value of $M$ and $\ell$ are $500 \mathrm{~g}$ and $2 \mathrm{~cm}$ respectively then percentage error of $\mathrm{Y}$ is :
Two similar wires under the same load yield elongation of $0.1$ $mm$ and $0.05$ $mm$ respectively. If the area of cross- section of the first wire is $4m{m^2},$ then the area of cross section of the second wire is..... $mm^2$
A wire of cross-sectional area $3\,m{m^2}$ is first stretched between two fixed points at a temperature of $20°C$. Determine the tension when the temperature falls to $10°C$. Coefficient of linear expansion $\alpha = {10^{ - 5}} { ^\circ}{C^{ - 1}}$ and $Y = 2 \times {10^{11}}\,N/{m^2}$ ........ $N$
A piece of copper having a rectangular cross-section of $15.2 \;mm \times 19.1 \;mm$ is pulled in tenston with $44,500\; N$ force, productng only elastic deformation. Calculate the resulting strain?
A cylindrical wire of radius $1\,\, mm$, length $1 m$, Young’s modulus $= 2 × 10^{11} N/m^2$, poisson’s ratio $\mu = \pi /10$ is stretched by a force of $100 N$. Its radius will become