Young's modulus is determined by the equation given by $\mathrm{Y}=49000 \frac{\mathrm{m}}{\ell} \frac{\text { dyne }}{\mathrm{cm}^2}$ where $\mathrm{M}$ is the mass and $\ell$ is the extension of wre used in the experiment. Now error in Young modules $(\mathrm{Y})$ is estimated by taking data from $M-\ell$ plot in graph paper. The smallest scale divisions are $5 \mathrm{~g}$ and $0.02$ $\mathrm{cm}$ along load axis and extension axis respectively. If the value of $M$ and $\ell$ are $500 \mathrm{~g}$ and $2 \mathrm{~cm}$ respectively then percentage error of $\mathrm{Y}$ is :
$0.2 \%$
$0.02 \%$
$2 \%$
$0.5 \%$
The force required to stretch a wire of crosssection $1 cm ^{2}$ to double its length will be ........ $ \times 10^{7}\,N$
(Given Yong's modulus of the wire $=2 \times 10^{11}\,N / m ^{2}$ )
Two wires $‘A’$ and $‘B’$ of the same material have radii in the ratio $2 : 1$ and lengths in the ratio $4 : 1$. The ratio of the normal forces required to produce the same change in the lengths of these two wires is
A uniform rod of mass $m$, length $L$, area of cross-section $A$ and Young's modulus $Y$ hangs from the ceiling. Its elongation under its own weight will be
A stone is tied to an elastic string of negligible mass and spring constant $k$. The unstretched length of the string is $L$ and has negligible mass. The other end of the string is fixed to a nail at a point $P$. Initially the stone is at the same level as the point $P$. The stone is dropped vertically from point $P$.
$(a)$ Find the distance $'y'$ from the top when the mass comes to rest for an instant, for the first time.
$(b)$ What is the maximum velocity attained by the stone in this drop ?
$(c)$ What shall be the nature of the motion after the stone has reached its lowest point ?
Two metallic wires $P$ and $Q$ have same volume and are made up of same material. If their area of cross sections are in the ratio $4: 1$ and force $F_1$ is applied to $\mathrm{P}$, an extension of $\Delta l$ is produced. The force which is required to produce same extension in $Q$ is $\mathrm{F}_2$.The value of $\frac{\mathrm{F}_1}{\mathrm{~F}_2}$ is__________.