In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?
Let $C$ denote the set of people who like cricket, and $T$ denote the set of people who like tennis
$\therefore n(C \cup T)=65, n(C)=40, n(C \cap T)=10$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 65=40+n(T)-10$
$\Rightarrow 65=30+n(T)$
$\Rightarrow n(T)=65-30=35$
Therefore, $35$ people like tennis.
Now,
$(T-C) \cup(T \cap C)=T$
Also.
$(T-C) \cap(T \cap C)=\varnothing$
$\therefore n(T)=n(T-C)+n(T \cap C)$
$\Rightarrow 35=n(T-C)+10 $
$\Rightarrow n(T-C)=35-10=25$
Thus, $25$ people like only tennis.
Of the members of three athletic teams in a school $21$ are in the cricket team, $26$ are in the hockey team and $29$ are in the football team. Among them, $14$ play hockey and cricket, $15$ play hockey and football, and $12$ play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is
In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
Two newspaper $A$ and $B$ are published in a city. It is known that $25\%$ of the city populations reads $A$ and $20\%$ reads $B$ while $8\%$ reads both $A$ and $B$. Further, $30\%$ of those who read $A$ but not $B$ look into advertisements and $40\%$ of those who read $B$ but not $A$ also look into advertisements, while $50\%$ of those who read both $A$and $B$ look into advertisements. Then the percentage of the population who look into advertisement is
In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?
A survey shows that $63 \%$ of the people in a city read newspaper $A$ whereas $76 \%$ read newspaper $B$. If $x \%$ of the people read both the newspapers, then a possible value of $x$ can be