In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of its progression is equals
$\frac{{\sqrt 5 - 1}}{2}$
$\frac{{1 - \sqrt 5 }}{2}$
$1$
$2\sqrt 5 $
Find the sum of the following series up to n terms:
$6+.66+.666+\ldots$
If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a $G.P.$ are $a, b$ and $c,$ respectively. Prove that
$a^{q-r} b^{r-p} c^{p-q}=1$
If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a $G.P.$ are $x, y$ and $z,$ respectively. Prove that $x,$ $y, z$ are in $G.P.$
Let the first term $a$ and the common ratio $r$ of a geometric progression be positive integers. If the sum of its squares of first three terms is $33033$, then the sum of these three terms is equal to
The value of ${a^{{{\log }_b}x}}$, where $a = 0.2,\;b = \sqrt 5 ,\;x = \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + .........$to $\infty $ is