If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a $G.P.$ are $a, b$ and $c,$ respectively. Prove that

$a^{q-r} b^{r-p} c^{p-q}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the first term and $R$ be the common ratio of the $G.P.$

According to the given information,

$A R^{p-1}=a$

$A R^{q-1}=b$

$A R^{r-1}=c$

$a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$

$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$

$ = {A^{q - r + r - p + p - q}} \times {R^{(pr - pr - q + r) + (rq - r + p - pq) + (pr - p - qr + q)}}$

$=A^{0} \times R^{0}$

$=1$

Thus, the given result is proved.

Similar Questions

${7^{th}}$ term of the sequence $\sqrt 2 ,\;\sqrt {10} ,\;5\sqrt 2 ,\;.......$ is

The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is

The G.M. of the numbers $3,\,{3^2},\,{3^3},\,......,\,{3^n}$ is

If the first term of a $G.P.$ ${a_1},\;{a_2},\;{a_3},..........$ is unity such that $4{a_2} + 5{a_3}$ is least, then the common ratio of $G.P.$ is

If the ${p^{th}}$,${q^{th}}$ and ${r^{th}}$ term of a $G.P.$ are $a,\;b,\;c$ respectively, then ${a^{q - r}}{b^{r - p}}{c^{p - q}}$ is equal to