એક માણસ પાસની રમતમાં જો $5$ અથવા $6$ તો તે $Rs $ $.\,100$ જીતે છે અને જો તેને બાકી કોઈપણ અંક આવે તો તે $Rs.\,50$ ગુમાવે છે .જો તે નક્કી કરે છે કે તે જ્યાં સુધી પાંચ કે છ ન આવે ત્યાં સુધી પાસા ઉછાળે છે અથવા મહતમ ત્રણ પ્રયાશ કરે તો તેનો અપેક્ષિત નફો કે નુકશાન મેળવો.
$\frac{{400}}{9}\,$ નુકશાની
$0$
$\frac{{400}}{3}\,$ નફો
$\frac{{400}}{3}\,$ નુકશાની
અહી$E _{1}, E _{2}, E _{3}$ એ પરસ્પર નિવારક ઘટના છે કે જેથી $P \left( E _{1}\right)=\frac{2+3 p }{6}, P \left( E _{2}\right)=\frac{2- p }{8}$ અને $P \left( E _{3}\right)$ $=\frac{1- p }{2}$ છે. જો $p$ ની મહતમ અને ન્યૂનતમ કિમંત અનુક્રમે $p _{1}$ અને $p _{2}$ ,હોય તો $\left( p _{1}+ p _{2}\right)$ ની કિમંત મેળવો.
એક પ્રયોગમાં એક પાસો ફેંકવામાં આવે છે અને જો પાસા ઉપર યુગ્મ સંખ્યા મળે તો એક સિક્કો એક વાર ઉછાળવામાં આવે છે. જો પાસા ઉપર અયુગ્મ સંખ્યા મળે તો સિક્કાને બે વાર ઉછાળે છે. આ પ્રયોગનો નિદર્શાવકાશ લખો.
એક ડબામાં $1$ લાલ અને $3$ સમાન સફેદ દડા રાખ્યા છે. બે દડા એક પછી એક પાછા મૂક્યા વગર ડબામાંથી યાદચ્છિક રીતે કાઢવામાં આવે છે.આ પ્રયોગનો નિદર્શાવકાશ લખો.
બે પાસા સાથે નાખવામાં આવે છે, તો મળતી સંખ્યાના અંકોનો સરવાળો $4$ નો ગુણક હોવાની સંભાવના કેટલી થાય ?
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
માત્ર બે જ કાંટા મળે.