Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.

Consider the following two statements:

$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.

$(II)$ A charge placed inside uniformly charged shell will experience a force.

Which of the above statements are valid?

  • [KVPY 2017]
  • A

    Only statement $I$ is valid

  • B

    Only statement $II$ is valid

  • C

    Both statements $I$ and $II$ are invalid

  • D

    Both statements $I$ and $II$ are valid

Similar Questions

In finding the electric field using Gauss Law the formula $|\overrightarrow{\mathrm{E}}|=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}|\mathrm{A}|}$ is applicable. In the formula $\varepsilon_{0}$ is permittivity of free space, $A$ is the area of Gaussian surface and $q_{enc}$ is charge enclosed by the Gaussian surface. The equation can be used in which of the following situation?

  • [JEE MAIN 2020]

Draw electric field lines when two positive charges are near.

An electric field is uniform, and in the positive $x$ direction for positive $x,$ and uniform with the same magnitude but in the negative $x$ direction for negative $x$. It is given that $E =200 \hat{ i }\; N/C$ for $x\,>\,0$ and $E =  - 200\hat i\;N/C$ for $x < 0 .$ A right ctrcular cyllnder of length $20 \;cm$ and radius $5\; cm$ has its centre at the origin and its axis along the $x$ -axis so that one face is at $x=+10\; cm$ and the other is at $x=-10\; cm$

$(a)$ What is the net outward flux through each flat face?

$(b)$ What is the flux through the side of the cylinder?

$(c)$ What is the net outward flux through the cylinder?

$(d)$ What is the net charge inside the cyllnder?

Find out the surface charge density at the intersection of point $x =3\, m$ plane and $x$ -axis, in the region of uniform line charge of $8\, nC / m$ lying along the $z$ -axis in free space.

  • [JEE MAIN 2021]

Each of two large conducting parallel plates has one sided surface area $A$. If one of the plates is given a charge $Q$ whereas the other is neutral, then the electric field at a point in between the plates is given by