ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$
$0.8$
$0.6$
$0.2$
$0.4$
ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P( E-$ નહિ અથવા $F-$ નહિ) $= 0.25$, ચકાસો કે $E$ અને $F$ પરસ્પર નિવારક છે કે નહિ?
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .
જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.
સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?
$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.
ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .