બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : અનિલ અને આશિમા બંને પૈકી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that

$P(E)=0.05$,  $P(F)=0.10$ and $P(E \cap F)=0.02$

Then

The event ' both Anil and Ashima will not qualify the examination' may be expressed as $E ^{\prime} \cap F^{\prime}$

since, $E ^{\prime}$ is 'not $E^{\prime},$ i.e., Anil will not qualify the examination and $F ^{\prime}$ is 'not $F^{\prime}$, i.e. Ashima will not qualify the examination.

Also $E ^{\prime} \cap F ^{\prime}=( E \cup F )^{\prime}$     (by Demorgan's Law)

Now $P ( E \cup F )= P ( E )+ P ( F )- P ( E \cap F )$

or   $P(E \cup F)=0.05+0.10-0.02=0.13$

Therefore $P\left(E^{\prime} \cap F^{\prime}\right)$ $=P(E \cup F)^{\prime}$ $=1-P(E \cup F)=1-0.13=0.87$

Similar Questions

જો વિર્ધાથી ગણિત,ભૌતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાનમાં પાસ થાય તેની સંભાવના અનુક્રમે $m, p$ અને $c$ છે.આ વિષયમાંથી,વિર્ધાથી ઓછામાં ઓછા એક વિષયમાં પાસ થાય તેની શક્યતા $75\%$ છે,ઓછામાં ઓછા બે વિષયમાં પાસ થાય તેની શક્યતા $50\%$, ફક્ત બે વિષયમાં પાસ થાય તેની શક્યતા $40\%$ છે.તો નીચેના પૈકી કયો સંબંધ સત્ય બને.

  • [IIT 1999]

નારંગીના ખોખામાંથી યાચ્છિક રીતે પુરવણી વગર ત્રણ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રણ નારંગીઓ સારી હોય, તો ખોખાના વેચાણ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ $15$ નારંગી પૈકી $12$ સારી અને $3$ ખરાબ હોય, તો તેને વેચાણ માટે મંજૂરી મળે તેની સંભાવના શોધો.

જો $A$ ને પરીક્ષામાં નાપાસ થવાની સંભાવના $1/5$ છે અને $B$ ની સંભાવના $3/10$ છે. તો $A$ અથવા $B$ ને નાપાસ થવાની સંભાવના કેટલી થાય ?

$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$  $P \left( A ^{\prime} \cap B ^{\prime}\right)$ શોધો.  

આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.