In a class of $35$ students, $24$ like to play cricket and $16$ like to play football. Also, each student likes to play at least one of the two games. How many students like to play both cricket and football?
Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.
Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$
Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get
$35=24+16-n( X \cap Y )$
Thus, $n( X \cap Y )=5$
i.e., $\quad 5$ students like to play both games.
In a class of $100$ students,$15$ students chose only physics (but not mathematics and chemistry),$3$ chose only chemistry (but not mathematics and physics), and $45$ chose only mathematics(but not physics and chemistry). Of the remaining students, it is found that $23$ have taken physics and chemistry,$20$ have taken physics and mathematics, and $12$ have taken mathematics and chemistry. The number of student who chose all the three subjects is
In a survey it was found that $21$ people liked product $A, 26$ liked product $B$ and $29$ liked product $C.$ If $14$ people liked products $A$ and $B, 12$ people liked products $C$ and $A, 14$ people liked products $B$ and $C$ and $8$ liked all the three products. Find how many liked product $C$ only.
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{2}$ but not chemical $C_{1}$
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?