In a class of $35$ students, $24$ like to play cricket and $16$ like to play football. Also, each student likes to play at least one of the two games. How many students like to play both cricket and football?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.

Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$

Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get

$35=24+16-n( X \cap Y )$

Thus, $n( X \cap Y )=5$

i.e., $\quad 5$ students like to play both games.

Similar Questions

In a class of $100$ students,$15$ students chose only physics (but not mathematics and chemistry),$3$ chose only chemistry (but not mathematics and physics), and $45$ chose only mathematics(but not physics and chemistry). Of the remaining students, it is found that $23$ have taken physics and chemistry,$20$ have taken physics and mathematics, and $12$ have taken mathematics and chemistry. The number of student who chose all the three subjects is

  • [KVPY 2021]

In a survey it was found that $21$ people liked product $A, 26$ liked product $B$ and $29$ liked product $C.$ If $14$ people liked products $A$ and $B, 12$ people liked products $C$ and $A, 14$ people liked products $B$ and $C$ and $8$ liked all the three products. Find how many liked product $C$ only.

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{2}$ but not chemical $C_{1}$

In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?

  • [KVPY 2017]

In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?