यदि द्विपद ${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ है और यदि प्रारम्भ से सातवें पद और अन्त से सातवें पद का अनुपात $\frac{1}{6}$ हो, तो $n = $

  • A

    $7$

  • B

    $8$

  • C

    $9$

  • D

    इनमें से कोई नहीं

Similar Questions

वह न्यूनतम प्राकृत संख्या $n$, जिसके लिए $\left( x ^{2}+\frac{1}{ x ^{3}}\right)^{ n }$ के प्रसार में $x$ का गुणांक ${ }^{ n } C _{23}$ है

  • [JEE MAIN 2019]

$\left(\frac{x}{\cos \theta}+\frac{1}{x \sin \theta}\right)^{16}$ के प्रसार में, यदि $x$ से स्वतंत्र पद का  निम्नतम मान $\ell_{1}$ है जब $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ तथा $x$ से स्वतंत्र पद का निम्नतम मान $\ell_{2}$ है जब $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8}$, तो अनुपात $\ell_{2}: \ell_{1}$ बराबर है

  • [JEE MAIN 2020]

माना $(1+2 \mathrm{x})^{\mathrm{n}}$ द्विपद प्रसार में तीन क्रमागत पदों के गुणांक का अनुपात $2: 5: 8$ है। इन तीन पदों के मध्य पद का गुणांक है__________. 

  • [JEE MAIN 2023]

$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$ के प्रसार में पूर्णांक पदों की संख्या है

  • [JEE MAIN 2023]

यदि $a$ और $b$ भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि $\left(a^{n}-b^{n}\right)$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णांक है।